Kinetics and Mechanism of the Thermal Decomposition of Hexaborane(12) in the Gas Phase

Robert Greatrex, Norman N. Greenwood, and Simon D. Waterworth

School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.

The gas-phase thermolysis of *arachno-B6HI2* produces predominantly *B5H9* and *B2H6* in a molar ratio of 2 : 1 *via* a first-order reaction having Arrhenius parameters which are essentially identical to those reported for the decomposition of the structurally related *B5H11;* these results imply a mechanism involving elimination of **BH3** as the rate-determining initial step in both reactions.

Progress has been slow in elucidating a coherent mechanistic description of the facile thermal interconversions of the simple binary boranes, not only because of the inherent complexity of the reactions but also because of difficulties in acquiring reliable kinetic data for these highly reactive, air-sensitive species. **1** We have developed **a** quantitative mass spectrometric technique for monitoring these reactions in detail, and have thereby gained new insights into the thermal decompositions and interconversion reactions of *nido-B*₆H₁₀² and the two *arachno* species $B_4H_{10}^{3,4a}$ and B_5H_{11} .⁴ We now report preliminary results of the first quantitative kinetic study on B_6H_{12} . The results are important because they provide the first opportunity to correlate kinetic, mechanistic, and structural patterns of behaviour in a unique series of closely related **arachno** binary boranes.

A typical reaction profile for the thermolysis of B_6H_{12} at ca. 100° C is shown in Figure 1 for an initial pressure of **3.14** mmHg. From this and similar profiles recorded over the pressure and temperature ranges 1.8-10.0 mmHg and **75-** 150° C, it emerges that this thermolysis is the most straightforward of all borane decompositions studied so far. The overall stoicheiometry is very well defined, with at least 80% of the B_6H_{12} decomposing to B_5H_9 plus $\frac{1}{2}B_2H_6$. From a detailed analysis of initial rates, the consumption of B_6H_{12} and the production of B_5H_9 and of B_2H_6 were all found to be accurately first-order with respect to the concentration of B_6H_{12} . In addition, a small amount of H_2 is produced, and even less B_6H_{10} ; the latter builds up rather slowly but persists in the later stages of the reaction when all the B_6H_{12} has decomposed. Only traces of higher boranes such as **B 10H14** are observed, and involatile solid hydrides account for as little as

Figure 1. Reaction profile for the thermolysis of B_6H_{12} (P_0 **3.14 mmHg**) at 99.4 °C. \bullet **B**₆H₁₂, \diamondsuit **B**₅H₉, \Box **B**₂H₆, \triangle **B**₁₀H₁₄, and \bigcirc **H2.**

10% of the boron consumed, compared with typical values of 40-50% in the thermolysis of $B_4H_{10}^3$ and $B_5H_{11}^4$.^{4b}

These results can readily be explained by a simple two-step mechanism involving the first order rate-determining elimination of ${BH_3}$ which then rapidly dimerizes to B_2H_6 [reactions **(1)** and (2)]. Previous qualitative studies of the decomposition of B_6H_{12} in the gas phase⁵ have yielded no mechanistic information and have sometimes suggested more complex behaviour than observed in the present work.

$$
B_6H_{12} \xrightarrow{\text{slow}} B_5H_9 + \{BH_3\} \tag{1}
$$

$$
2\{BH_3\} \quad \rightleftharpoons \quad B_2H_6 \tag{2}
$$

$$
B_5H_{11} \to \{B_4H_8\} + \{BH_3\} \tag{3}
$$

Our recent kinetic study of B_5H_{11} ⁴ has shown that this borane also decomposes *via* the initial rate-determining elimination of **{BH3}** from the cluster [reaction **(3)],** and it is therefore particularly significant that the activation energy and pre-exponential factor now found for the B_6H_{12} thermolysis $(E_a 75.0 \pm 5.8 \text{ kJ} \text{ mol}^{-1}$; *A* 3.8 × 10⁷s⁻¹) are essentially identical to the values obtained for B_5H_{11} (E_a 72.6 \pm 2.4 kJ mol⁻¹; A 1.3 \times 10⁷ s⁻¹). This is persuasive additional evidence that the rate-determining steps in the two decompositions do indeed involve very similar processes and this finds a ready interpretation in terms of the detailed molecular structures of gaseous B_5H_{11} ⁶ and B_6H_{12} ,⁷ as recently determined by electron diffraction. **As** shown in Figure 2, 7 these two species bear a close structural relationship to each other and to **B4H10.*** Thus, notional replacement of **Hendo** and one H_u on, say, B(4) in B_4H_{10} by a BH₃ group yields B_5H_{11} and

Figure 2. Structural relationship between the arachno-boranes (a) B_4H_{10} ,⁸ (b) B_5H_{11} ,⁶ and (c) \overline{B}_6H_{12} ,⁷ as determined by gas-phase electron diffraction.

repetition of this process on the opposite side of the molecule, *i.e.* at $B(2)$, generates the observed structure of B_6H_{12} having C_2 symmetry. In view of the similarity of the Arrhenius parameters for the decomposition of B_6H_{12} and B_5H_{11} , it seems reasonable to identify these structurally similar **BH3** groups as the fragments involved in the initial steps (1) and (3) . In B_4H_{10} , by contrast, these particular incipient BH_3 groups are absent and its decomposition is characterized by quite different Arrhenius parameters $(E_a 99.2 \pm 0.8 \text{ kJ} \text{ mol}^{-1})$; \hat{A} 6.0 \times 10¹¹ s⁻¹).³ In this case the initial step is believed to involve elimination of H_2 to give ${B_4H_8}$. This type of reaction is clearly not favoured in the case of B_5H_{11} and \overline{B}_6H_{12} , though small amounts of B_6H_{10} are produced in the thermolysis of **B6H12,** and further work is necessary to determine whether this species and dihydrogen arise from a competing, but minor, reaction channel involving direct elimination of H₂ from B_6H_{12} .

We thank Mr. D. Singh for experimental assistance and the S.E.R.C. for a maintenance grant (to *S.* D. W.).

Received, 22nd March 1988; Corn. 8/0I1566

References

- N. N. Greenwood and R. Greatrex, *Pure Appl. Chem.,* **1987, 59,** *857,* and references therein.
- R. Greatrex, N. N. Greenwood, and G. **A.** Jump, *J. Chem.* **SOC.,** *Dalton Trans.,* **1985, 541.**
- *R.* Greatrex, N. N. Greenwood, and C. D. Potter, *J. Chem. SOC., Dalton Trans.,* **1986,** 81.
- (a) M. D. Attwood, R. Greatrex, and N. N. Greenwood, *J. Chem.* **SOC.,** *Dalton Trans.,* submitted for publication; (b) *ibid.,* submitted for publication.
- D. F. Gaines and R. Schaeffer, *Inorg. Chem.,* **1964,3,438; A.** L. Collins and R. Schaeffer, *ibid.,* p. **2153;** C. **A.** Lutz, D. **A.** Phillips, and D. M. Ritter, *ibid.,* p. **1191; S. J.** Steck, G. **A.** Pressley, **F.** E. Stafford, J. Dobson, and R. Schaeffer, *ibid.,* p. **2452;** T. C. Gibb. N. N. Greenwood, T. R. Spalding, and D. Taylorson, *J. Chem.* **SOC.,** *Dalton Trans.,* **1979, 1392.**
- *R.* Greatrex, N. N. Greenwood, D. W. **H.** Rankin, and H. E. Robertson, *Polyhedron.,* **1987,6, 1849.**
- R. Greatrex, N. N. Greenwood, M. **B.** Millikan, D. W. **H.** Rankin, and **H.** E. Robertson, *J. Chem. SOC., Dalton Trans.,* in the press.
- C. J. Dain, **A. J.** Downs, G. *S.* Laurenson, andD. W. **H.** Rankin, *J. Chem.* **SOC.,** *Dalton Trans.,* **1981, 472.**